Nucleon Compton scattering from the Dyson-Schwinger perspective

Gernot Eichmann
University of Graz, Austria

Compton scattering off Protons and Light Nuclei: pinning down the nucleon polarizabilities

ECT*, Trento
August 1, 2013

Introduction

Goal: compute nucleon's Compton scattering amplitude (and other things) from quark-gluon substructure in QCD.

- Handbag vs. nucleon (s- and u-channel) and meson (t-channel) resonances?
- Electromagnetic gauge invariance at the quark-gluon level?
- Quark core vs. pion cloud?
- Tensor decomposition for (on- and offshell) fermion two-photon vertex?

QCD's Green functions \leftrightarrow "Dyson-Schwinger approach":
Nonperturbative, covariant, low and high energies, light and heavy quarks. But: truncations!

- Baryon spectroscopy from three-body Faddeev equation

GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010)

- Elastic \& transition form factors for N and Δ

GE, PRD 84 (2011); GE, Fischer, EPJ A48 (2012); GE, Nicmorus, PRD 85 (2012); ...

- Tetraquark interpretation for σ meson

Heupel, GE, Fischer, PLB 718 (2012)

- Compton scattering

GE, Fischer, PRD 85 (2012) \& PRD 87 (2013)

Dyson-Schwinger equations

QCD Lagrangian:

quarks, gluons (+ ghosts)

$$
\mathcal{L}=\bar{\psi}(x)(i \not \partial+g \mathscr{A}-M) \psi(x)-\frac{1}{4} F_{\mu \nu}^{a} F_{a}^{\mu \nu}
$$

QCD \& hadron properties are encoded in QCD's Green functions.
Their quantum equations of motion are the Dyson-Schwinger equations (DSEs):

- Quark propagator:

$$
0^{-1}
$$

$=$ \qquad -1

- Quark-gluon vertex:
- Gluon propagator:
- Gluon selfinteractions, ghosts,...


```
momon
```

momon
= mmom

```







\section*{Dyson-Schwinger equations}

\section*{QCD Lagrangian:}
quarks, gluons (+ ghosts)
\[
\mathcal{L}=\bar{\psi}(x)(i \not \partial+g \mathscr{A}-M) \psi(x)-\frac{1}{4} F_{\mu \nu}^{a} F_{a}^{\mu \nu}
\]

QCD \& hadron properties are encoded in QCD's Green functions.
Their quantum equations of motion are the Dyson-Schwinger equations (DSEs):
- Quark propagator:
```

-0--1

```
- Quark-gluon vertex:

- Gluon propagator:
```

morom

```
- Gluon selfinteractions, ghosts, ...
\(\qquad\) \(-1\)

- Truncation \(\Rightarrow\) closed system, solveable. Ansätze for Green functions that are not solved (based on pQCD, lattice, FRG, ...)
- Applications:

Origin of confinement, QCD phase diagram, Hadron physics

\section*{Dynamical quark mass}

Fischer, J. Phys. G 32 (2006)
- Dynamical chiral symmetry breaking: generates "constituent-quark masses"
- Realized in quark Dyson-Schwinger eq:


If (gluon propagator \(\times\) quark-gluon vertex) is strong enough ( \(\alpha>\alpha_{\text {crit }}\) ): momentum-dependent quark mass \(M\left(p^{2}\right)\)
- Already visible in simpler models (NJL, Munczek-Nemirovsky)
- Mass generation for light hadrons


\section*{Hadrons: poles in Green functions}
- Quark four-point function:
\(\langle 0| \mathbf{T} \psi\left(x_{1}\right) \bar{\psi}\left(x_{2}\right) \psi\left(x_{3}\right) \bar{\psi}\left(x_{4}\right)|0\rangle\)


Bethe-Salpeter WF:
\(\langle 0| T \psi\left(x_{1}\right) \bar{\psi}\left(x_{2}\right)|H\rangle\)
- Quark six-point function:


Faddeev WF

\section*{Hadrons: poles in Green functions}
- Quark four-point function:
\(\langle 0| \mathrm{T} \psi\left(x_{1}\right) \bar{\psi}\left(x_{2}\right) \psi\left(x_{3}\right) \bar{\psi}\left(x_{4}\right)|0\rangle\)

- Quark six-point function:


\section*{Faddeev WF}
- Quark-antiquark vertices: (Currents: \(J^{\mu}=\bar{\psi} \Gamma^{\mu} \psi\) )
\(\langle 0| \mathrm{T} J^{\mu}(x) \psi\left(x_{1}\right) \bar{\psi}\left(x_{2}\right)|0\rangle\)

- Current correlators:
\(\langle 0| \mathrm{T} J^{\mu}(x) J^{\nu}(y)|0\rangle\)
Decay constant:
\(\langle 0| J^{\mu}|H\rangle\)
Quark-photon vertex
has \(\rho\)-meson poles:
'vector-meson dominance'


\section*{Bethe-Salpeter equations}
- Inhomogeneous BSE for quark four-point function:


Analogy: geometric series
\(f(x)=1+x f(x) \quad \Rightarrow \quad f(x)=\frac{1}{1-x}\)
\(|x|<1 \Rightarrow f(x)=1+x+x^{2}+\ldots\)
- Homogeneous BSE for bound-state wave function:

- Inhomogeneous BSE for quark-antiquark vertices:


What's the kernel K?
Related to Green functions via symmetries: CVC, PCAC \(\Rightarrow\) vector, axialvector WTIs

Relate \(\mathbf{K}\) with quark propagator and quark-gluon vertex

\section*{Structure of the kernel}

Rainbow-ladder: tree-level vertex + effective coupling



Ansatz for effective coupling:
Maris, Roberts, Tandy, PRC 56 (1997), PRC 60 (1999)
\[
\alpha\left(k^{2}\right)=\alpha_{\mathrm{IR}}\left(\frac{k^{2}}{\Lambda^{2}}, \eta\right)+\alpha_{\mathrm{UV}}\left(k^{2}\right)
\]

Adjust infrared scale \(\Lambda\) to physical observable,
keep width \(\eta\) as parameter
\(\checkmark\) DCSB, CVC, PCAC
\(\Rightarrow\) mass generation
\(\Rightarrow\) Goldstone theorem, massless pion in \(\chi \mathrm{L}\)
\(\Rightarrow\) em. current conservation
\(\Rightarrow\) Goldberger-Treiman
~ No pion cloud, no flavor dependence, no \(U_{A}(1)\) anomaly, no dynamical decay widths


Pion cloud: need infinite summation of t -channel gluons

\section*{Mesons}
- Pseudoscalar \& vector mesons: rainbow-ladder is good. Masses, form factors, decays, \(\pi \pi\) scattering lengths, PDFs
Maris, Roberts, Tandy, PRC 56 (1997), PRC 60 (1999); Bashir et al., Commun. Theor. Phys. 58 (2012)

Pion is Goldstone boson, satisfies GMOR: \(m_{\pi}{ }^{2} \sim m_{q}\)

- Need to go beyond rainbow-ladder for excited, scalar, axialvector mesons, \(\eta-\eta^{\prime}\), etc.
- Heavy mesons Blank, Krassnigg, PrD 84 (2011)
\(M[\mathrm{GeV}]\)


\section*{Baryons}

Covariant Faddeev equation: kernel contains 2PI and 3PI parts


Current matrix element: \(\langle H| J^{\mu}|H\rangle=\bar{\chi}\left(G^{-1}\right)^{\mu} \chi\)
'Gauging of equations':
Kvinikhidze, Blankleider, PRC 60 (1999)
Oettel, Pichowsky, von Smekal, EPJ A 8 (2000)
- Impulse approximation + gauged kernel \(\left(G^{-1}\right)^{\mu}=\left(G_{0}^{-1}\right)^{\mu}-K^{\mu}\)


\section*{Truncation:}
- Quark-quark correlations only (dominant structure in baryons?)
- Rainbow-ladder gluon exchange
- But full Poincaré-covariant structure of Faddeev amplitude retained
\(\rightarrow\) Same input as for mesons, quark from DSE, no additional parameters!

\section*{Baryons}

Covariant Faddeev equation: kernel contains 2PI and 3PI parts


Current matrix element: \(\langle H| J^{\mu}|H\rangle=\bar{\chi}\left(G^{-1}\right)^{\mu} \chi\)
- Impulse approximation + gauged kernel \(\left(G^{-1}\right)^{\mu}=\left(G_{0}^{-1}\right)^{\mu}-K^{\mu}\)


\section*{Truncation:}
- Quark-quark correlations only (dominant structure in baryons?)
- Rainbow-ladder gluon exchange
- But full Poincaré-covariant structure of Faddeev amplitude retained
\(\rightarrow\) Same input as for mesons, quark from DSE, no additional parameters!

\section*{Faddeev wave function}
\begin{tabular}{|c|c|c|}
\hline \(s\) & \(l\) & \(T_{i j}\) \\
\hline \[
\begin{align*}
& 1 / 2 \\
& 1 / 2 \tag{8}
\end{align*}
\] & 0
0 & \begin{tabular}{l}
\[
\mathbb{1} \otimes \mathbb{1}
\] \\
s waves
\[
\gamma_{T}^{\mu} \otimes \gamma_{T}^{\mu}
\]
\end{tabular} \\
\hline \[
\begin{aligned}
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2
\end{aligned}
\] & 1
1
1
1 & \begin{tabular}{l}
\[
\begin{aligned}
& \mathbb{1} \otimes \frac{1}{2}[p \boldsymbol{p}, \boldsymbol{q}] \\
& \mathbb{1} \otimes p \\
& \mathbb{1} \otimes \boldsymbol{q} \\
& \left.\gamma_{T}^{\mu} \otimes \gamma_{T}^{\mu} \frac{1}{2}[p, \phi]\right] \\
& \gamma_{T}^{\mu} \otimes \gamma_{T}^{\mu} p \\
& \gamma_{T}^{\mu} \otimes \gamma_{T}^{\mu} \phi
\end{aligned}
\] \\
p waves
\end{tabular} \\
\hline \[
\begin{aligned}
& 3 / 2 \\
& 3 / 2 \\
& 3 / 2
\end{aligned}
\] & 1 & \[
\begin{aligned}
& 3(p \otimes \phi-\phi \phi \otimes p)-\gamma_{T}^{\mu} \otimes \gamma_{T}^{\mu}[p, \phi] \\
& 3 p p \otimes \mathbb{1}-\gamma_{T}^{\mu} \otimes \gamma_{T}^{\mu} p \\
& 3 \phi \otimes \mathbb{1}-\gamma_{T}^{\mu} \otimes \gamma_{T}^{\mu} \phi
\end{aligned}
\] \\
\hline \[
\begin{align*}
& 3 / 2 \\
& 3 / 2  \tag{20}\\
& 3 / 2 \\
& 3 / 2 \\
& 3 / 2
\end{align*}
\] & 2
2
2
2
2 & \[
\begin{aligned}
& 3 p \otimes p-\gamma_{T}^{\mu} \otimes \gamma_{T}^{\mu} \quad \text { d waves } \\
& p \otimes p+2 \phi \& \phi-\gamma_{T}^{\mu} \otimes \gamma_{T}^{\mu} \quad \text { (20) } \\
& p \otimes \phi+q \otimes p \\
& q \otimes[q, p]-\frac{1}{2} \gamma_{T}^{\mu} \otimes\left[\gamma_{T}^{\mu}, p\right] \\
& p \otimes[p, \not q]-\frac{1}{2} \gamma_{T}^{\mu} \otimes\left[\gamma_{T}^{\mu}, \notin\right]
\end{aligned}
\] \\
\hline
\end{tabular}
\[
\chi\left(x_{1}, x_{2}, x_{3}\right)=\langle 0| T \psi\left(x_{1}\right) \psi\left(x_{2}\right) \psi\left(x_{3}\right)|N\rangle
\]

\section*{Momentum space:}

Jacobi coordinates \(p, q, P\)
\(\Rightarrow 5\) Lorentz invariants
\(\Rightarrow 64\) Dirac basis elements

\[
\chi(p, q, P)=\sum_{k} \begin{array}{|l|l|}
\hline f_{k}\left(p^{2}, q^{2}, p \cdot q, p \cdot P, q \cdot P\right) \quad \text { Momentum } \\
\hline \tau_{\alpha \beta \gamma \delta}^{k}(p, q, P) \text { Dirac } & \otimes \text { Flavor } \otimes \text { Color } \\
\hline
\end{array}
\]

Complete, orthogonal Dirac tensor basis (partial-wave decomposition in nucleon rest frame): GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010)
\[
\begin{array}{r}
T_{i j}\left(\Lambda_{ \pm} \gamma_{5} C \otimes \Lambda_{+}\right) \\
\left(\gamma_{5} \otimes \gamma_{5}\right) T_{i j}\left(\Lambda_{ \pm} \gamma_{5} C \otimes \Lambda_{+}\right)
\end{array} \quad(A \otimes B)_{\alpha \beta \gamma \delta}=A_{\alpha \beta} B_{\gamma \delta}
\]

\section*{Baryon masses}
- Good agreement with experiment \& lattice. Pion mass is also calculated.
- Same kernel as for mesons, scale set by \(f_{\pi}\). Full covariant wave functions, no further parameters or approximations.
- Masses not sensitive to effective interaction.
- Diquark clustering in baryons: similar results in quark-diquark approach Oettel, Alkofer, von Smekal, EPJ A8 (2000) GE, Cloet, Alkofer, Krassnigg, Roberts, PRC 79 (2009)
- Excited baryons (e.g. Roper): also quark-diquark structure?


Delta mass:
Sanchis-Alepuz et al., PRD 84 (2011)

Nucleon mass:
GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010); GE, PRD 84 (2011)
\(\rho\)-meson mass:
Maris \& Tandy,
PRC 60 (1999)

\section*{Electromagnetic form factors}

Nucleon em. FFs vs. momentum transfer GE, PRD 84 (2011)
- Agreement with data at larger \(Q^{2}\) and lattice at larger quark masses

- Missing pion cloud below \(1-2 \mathrm{GeV}^{2}\), in chiral region
~ nucleon quark core without pion effects



\section*{Electromagnetic form factors}

Nucleon charge radii:
isovector ( \(p-n\) ) Dirac ( F 1 ) radius

- Pion-cloud effects missing in chiral region ( \(\Rightarrow\) divergence!), agreement with lattice at larger quark masses.

Nucleon magnetic moments:
isovector ( \(p-n\) ), isoscalar ( \(p+n\) )

- But: pion-cloud cancels in \(\kappa^{s} \Leftrightarrow\) quark core

Exp: \(\kappa^{s}=-0.12\)
Calc: \(\kappa^{s}=-0.12(1)\)

\section*{Nucleon- \(\Delta-\gamma\) transition}
- Magnetic dipole form factor \(G_{M}^{\star}\) dominant, quark spin flip. As expected: "Core \(+25 \%\) pion cloud"
- Electric quadrupole transition \(R_{E M}\) small \& negative, encodes deformation. Perturbative QCD: \(R_{E M} \rightarrow 1\), Quark model: need d waves or pion cloud.


But: subleading tensor structures important, Quark OAM ( \(p\) waves) by Poincaré covariance!

GE \& Nicmorus, PRD 85 (2012)



\section*{Quark-photon vertex}

\section*{Current matrix element: \(\langle H| J^{\mu}|H\rangle=\)}


Vector WTI \(Q^{\mu} \Gamma^{\mu}(k, Q)=S^{-1}\left(k_{+}\right)-S^{-1}\left(k_{-}\right)\) determines vertex up to transverse parts:
\[
\Gamma^{\mu}(k, Q)=\Gamma_{\mathrm{BC}}^{\mu}(k, Q)+\Gamma_{\mathrm{T}}^{\mu}(k, Q)
\]
- Ball-Chiu vertex, completely specified by dressed fermion propagator: Ball, Chiu, PRD 22 (1980)
\[
\Gamma_{\mathrm{BC}}^{\mu}(k, Q)=i \gamma^{\mu} \Sigma_{A}+2 k^{\mu}\left(i k \Delta_{A}+\Delta_{B}\right)
\]
\(\Sigma_{A}:=\frac{A\left(k_{+}^{2}\right)+A\left(k_{-}^{2}\right)}{2}\),
\(\Delta_{A}:=\frac{A\left(k_{+}^{2}\right)-A\left(k_{-}^{2}\right)}{k_{+}^{2}-k_{-}^{2}}\),
\(\Delta_{B}:=\frac{B\left(k_{+}^{2}\right)-B\left(k_{-}^{2}\right)}{k_{+}^{2}-k_{-}^{2}}\)
- Transverse part: free of kinematic singularities, tensor structures \(\sim Q, Q^{2}, Q^{3}\), contains meson poles Kizilersu, Reenders, Pennington, PRD 92 (1995); GE, Fischer, PRD 87 (2013)
\(t_{a b}^{\mu \nu}:=a \cdot b \delta^{\mu \nu}-b^{\mu} a^{\nu}\)
\begin{tabular}{lrl} 
Dominant & \(\tau_{1}^{\mu}\) & \(=t_{Q Q}^{\mu \nu} \gamma^{\nu}\), \\
& \(\tau_{2}^{\mu}\) & \(=t_{Q Q}^{\mu \nu} k \cdot Q \frac{i}{2}\left[\gamma^{\nu}, \not k\right]\), \\
& \(\tau_{3}^{\mu}\) & \(=\frac{i}{2}\left[\gamma^{\mu}, \not Q\right]\) \\
Anomalous \\
magnetic moment & \(\tau_{4}^{\mu}\) & \(=\frac{1}{6}\left[\gamma^{\mu}, k, \notin\right]\),
\end{tabular}
\[
\begin{aligned}
\tau_{5}^{\mu} & =t_{Q Q}^{\mu \nu} i k^{\nu}, \\
\tau_{6}^{\mu} & =t_{Q Q}^{\mu \nu} k^{\nu} \not k, \\
\tau_{7}^{\mu} & =t_{Q k}^{\mu \nu} k \cdot Q \gamma^{\nu}, \quad \text { Curtis, Pennington, PRD } 42 \text { (1990) } \\
\tau_{8}^{\mu} & =t_{Q k}^{\mu \nu} \frac{i}{2}\left[\gamma^{\nu}, \not k\right] .
\end{aligned}
\]

\section*{Hadron scattering}

Can we extend this to four-body scattering processes?
GE, Fischer, PRD 85 (2012)


Compton scattering, DVCS, \(2 \gamma\) physics

\[
\bar{p} p \rightarrow \gamma \gamma^{*}
\]
annihilation


Meson photo- and electroproduction


Meson production


Nucleon-pion scattering


Pion Compton scattering
\(\Rightarrow\) Nonperturbative description of hadron-photon and hadron-meson scattering

\section*{Nucleon Compton scattering}

\[
\begin{aligned}
\tau & =\frac{Q^{2}}{4 M^{2}} \\
\tau^{\prime} & =\frac{Q^{\prime 2}}{4 M^{2}}
\end{aligned}
\]
\[
\operatorname{vcs} / \begin{aligned}
t & =\frac{\Delta^{2}}{4 M^{2}} \\
v & =\frac{s-u}{4 M^{2}}=-\frac{\Sigma \cdot P}{M^{2}}
\end{aligned}
\]
- RCS, VCS:
nucleon (generalized) polarizabilities
- DVCS:
factorization \& handbag dominance, GPDs
- Forward limit:
structure functions in DIS
- Timelike region:
\(\mathrm{p} \overline{\mathrm{p}}\) annhihilation at PANDA@FAIR
- Spacelike region:
two-photon corrections to nucleon form factors

\section*{Nucleon Compton scattering}

\[
\begin{aligned}
& \tau=\frac{Q^{2}}{4 M^{2}} \\
& \tau^{\prime}=\frac{Q^{\prime 2}}{4 M^{2}}
\end{aligned}
\]
\[
\operatorname{vcs} \int^{\tau} / \quad \begin{aligned}
& t=\frac{\Delta^{2}}{4 M^{2}} \\
& v=\frac{s-u}{4 M^{2}}=-\frac{\Sigma \cdot P}{M^{2}}
\end{aligned}
\]


4-dim phase space simpler in Lorentz-invariant hyperspherical variables \(\mathbf{t}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}\) :
\[
\frac{\Delta^{2}}{4 M^{2}}=t, \quad \frac{\Sigma^{2}}{M^{2}}=: t X, \quad \widehat{P} \cdot \widehat{\Sigma_{T}}=: Y, \quad \widehat{\Sigma} \cdot \widehat{\Delta}=: Z
\]


\section*{Compton scattering}

- All direct measurements in kinematic limits (RCS, VCS, forward limit).
- Em. gauge invariance \(\Rightarrow\) Compton amplitude is fully transverse. Analyticity constrains 1PI part in these limits (low-energy theorem).
- Polarizabilities \(=\) coefficients of tensor structures that vanish like \(\sim Q^{\mu} Q^{\prime \nu}, Q^{\mu} Q^{\nu}, Q^{\prime \mu} Q^{\prime \nu}, \ldots\)
- Need tensor basis free of kinematic singularities (18 elements). Complicated...

Bardeen,Tung, Phys. Rev. 173 (1968)
Perrottet, Lett. Nuovo Cim. 7 (1973)
Tarrach, Nuovo Cim. 28 A (1975)
Drechsel et al., PRC 57 (1998)
L'vov et al., PRC 64 (2001)
Gorchtein, PRC 81 (2010)
Belitsky, Mueller, Ji, 1212.6674 [hep-ph]

\section*{Tensor basis?}
\[
\begin{aligned}
& \tau_{1}=\gamma^{\mu} \\
& \tau_{2}=\sigma^{\mu \nu} Q^{\nu}
\end{aligned}
\]

\section*{Transversality, analyticity and Bose symmetry makes the construction extremely difficult...}

Tarrach,
Nuovo Cim. 28 (1975)
\[
T_{s}=k_{r} k_{k}^{\prime}, \quad T_{1 p}=\left(P_{v} k_{\mu}^{\prime}+P_{s} k_{v}\right) \hat{\mathbb{K}},
\]
\[
T_{\mathrm{s}}=k_{v}^{\prime} k_{\mu}, \quad T_{2 n}=\left(P_{v} v_{\mu}^{\prime}-P_{\mu} k_{\beta}\right) \hat{R},
\]
\[
T_{\Delta}=k_{r} k_{\mu}+k_{v}^{\prime} k_{\mu}^{\prime}, \quad T_{21}=P_{v} \gamma_{\mu}+P_{u} \gamma_{v},
\]
\[
T_{s}=k_{v} k_{z}-k_{r}^{\prime} k_{\mu}^{\prime},
\]
\[
T_{,}=P_{r} k_{\mu}^{\prime}+P_{\mu} k_{r}, \quad T_{s u}=k_{n}^{\prime} \gamma_{\mu}-k_{\mu} \gamma_{r},
\]
\[
T_{19}=P_{v} k_{\mu}^{\prime}-P_{s} k_{r}, \quad T_{27}=\left(P_{r} \gamma_{\mu}+P_{\mu} \gamma_{r}\right) \hat{K}-\hat{K}\left(P_{r} \gamma_{\mu}+P_{s} \gamma_{\gamma}\right),
\]
\[
T_{16}=P_{v} P_{n} \hat{K}, \quad T_{1 s}=\gamma_{v} \gamma_{k}-\gamma_{n} \gamma_{k}
\]
\[
\begin{aligned}
& \tau_{1}=k \cdot k^{\prime} T_{1}-T_{1}, \\
& \tau_{8}=k^{2} k^{r_{3}} T_{1}+k \cdot k^{\prime} T_{3}-\frac{k^{2}+k^{\prime 2}}{2} T_{4}+\frac{k^{2}-k^{\prime 2}}{2} T_{s}, \\
& \tau_{3}=(P \cdot K)^{3} T_{1}+k \cdot k^{\prime} T_{4}-P \cdot K T_{7}, \\
& \tau_{4}=P \cdot K\left(k^{2}+k^{\prime 2}\right) T_{1}-P \cdot K T_{4}-\frac{k^{2}+k^{\prime 2}}{2} T_{9}+\frac{k^{2}-k^{\prime 2}}{2} T_{9}+k \cdot k^{\prime} T_{v}, \\
& \tau_{\mathrm{s}}=-\boldsymbol{P} \cdot K\left(k^{2}-k^{\prime 2}\right) T_{\mathbf{1}}+\boldsymbol{P} \cdot K T_{5}+\frac{k^{\mathbf{s}}-k^{\prime 2}}{2} T_{T}-\frac{k^{2}+k^{\prime 2}}{2} T_{\mathbf{4}}+k \cdot k^{\prime} T_{10}, \\
& \tau_{6}=\boldsymbol{P} \cdot K T_{8}-\frac{k^{2}+k^{\prime 2}}{4} T_{9}-\frac{k^{2}-k^{\prime 2}}{4} T_{10}-M T_{12}+M \frac{k^{2}+k^{\prime 2}}{4} T_{22}- \\
& -M \frac{k^{2}-k^{\prime 2}}{4} T_{34}+\frac{k^{2}-k^{\prime 2}}{8} T_{29}-\frac{k^{2}+k^{\prime 2}}{8} T_{30}-\frac{k^{2} k^{\prime 2}}{4} T_{32}, \\
& \tau_{1}=8 T_{14}-4 P \cdot K T_{21}+P \cdot K T_{34}, \\
& \tau_{\mathrm{B}}=T_{1 \mathrm{~g}}+\frac{k^{2}-k^{\prime 2}}{2} T_{2 \mathrm{~s}}-P \cdot K T_{23}+\frac{k^{*}+k^{\prime 2}}{8} T_{\mathrm{as}}, \\
& \tau_{\mathrm{g}}=T_{2 p}-\frac{k^{2}+k^{\prime 2}}{2} T_{25}+P \cdot K T_{34}-\frac{k^{2}-k^{\prime 2}}{8} T_{34}, \\
& \tau_{10}=-8 k \cdot k^{\prime} T_{4}+4 P \cdot K T_{3}+4 M k \cdot k^{\prime} T_{11}-4 M P \cdot K T_{2 b}- \\
& -2 P \cdot K T_{32}-2 k \cdot k^{\prime} P \cdot K T_{38}+M k \cdot k^{\prime} T_{34}, \\
& r_{11}=T_{18}-k \cdot k^{\prime} T_{22}+P \cdot K T_{26} \\
& \tau_{18}=P \cdot K T_{4}-\frac{k^{2}-k^{\prime 2}}{2} T_{4}-k \cdot k^{\prime} T_{3}-M T_{14}+M k \cdot k^{\prime} T_{21}- \\
& -M \frac{k^{3}-k^{\prime 2}}{2} T_{25}-\frac{k^{2}+k^{\prime 2}}{4} T_{39}-k \cdot k^{\prime} \frac{k^{3}+k^{\prime 3}}{4} T_{51} \text {, } \\
& \tau_{1 \mathrm{n}}=P \cdot K T_{5}-\frac{k^{2}+k^{\prime 2}}{2} T_{8}+k \cdot k^{\prime} T_{10}-M T_{15}+M k \cdot k^{\prime} T_{34}- \\
& -M \frac{k^{2}+k^{\prime 2}}{2} T_{36}-\frac{k^{2}-k^{\prime 2}}{4} T_{38}-k \cdot k^{\prime} \frac{k^{2}-k^{\prime 2}}{4} T_{33},
\end{aligned}
\]
\[
\begin{aligned}
& T_{15}=\left(P_{p} k_{k}-P_{p} k_{k}^{\prime}\right) \hat{K}, \\
& T_{m}=P_{r} \gamma_{\mu}-P_{\mu} \gamma_{\gamma}, \\
& T_{n}=k, \gamma_{\mu}+k_{\mu} \gamma_{\nu}, \\
& r_{s t}=k, \gamma_{s}-k_{k}^{\prime} \gamma_{v}, \\
& T_{2 s}=k_{r}^{\prime} \gamma_{\mu}+k_{\mu} \gamma_{r},
\end{aligned}
\]

\section*{\(\tau_{14}=2 P \cdot K T_{s}-2 M k+k^{\prime} T_{3 n}+2 M P \cdot K T_{34}-k \cdot k^{\prime} T_{27}+P \cdot K T_{31}\),}
\(\tau_{15}=-\left(k^{2}-k^{\prime 2}\right) T_{7}+\left(k^{4}+k^{r 2}\right) T_{s}-2 k \cdot k^{\prime} T_{10}-2 M k \cdot k^{\prime} T_{24}+\)
\(+\boldsymbol{M}\left(k^{2}-k^{\prime 2}\right) T_{25}+\boldsymbol{M}\left(k^{2}+k^{\prime 2}\right) T_{29}-k \cdot k^{\prime} T_{2 a}+\)
\[
+\frac{k^{2}+k^{\prime 2}}{2} T_{31}+\frac{k^{z}-k^{\prime 2}}{2} T_{32},
\]
\(\tau_{14}=-\left(k^{z}+k^{\prime 2}\right) T_{9}+\left(k^{4}-k^{\prime 2}\right) T_{8}+2 k \cdot k^{\prime} T_{9}-2 M k \cdot k^{\prime} T_{52}+\)
\[
+M\left(k^{4}+k^{\prime 2}\right) T_{25}+M\left(k^{2}-k^{t_{2}}\right) T_{24}-k \cdot k^{\prime} T_{30}+
\]
\[
+\frac{k^{2}-k^{\prime 2}}{2} T_{31}^{\prime}+\frac{k^{2}+k^{\prime 2}}{2} T_{32},
\]
\(\tau_{19}=-4 P \cdot K T_{1}+2 T_{9}+4 M T_{\mathrm{LI}}-2 M T_{\mathrm{sa}}+T_{38}+k \cdot k^{\prime} T_{38}\),
\(\tau_{18}=4 T_{18}-4 P \cdot K T_{25}+k \cdot k^{\prime} T_{34}\)
\(\tau_{19}=\frac{1}{k \cdot k^{\prime}}\left[2(P \cdot K)^{2} \tau_{2}+2 k^{2} k^{\prime_{2}} \tau_{3}-P \cdot K\left(k^{4}+k^{\prime 2}\right) \tau_{4}-P \cdot K\left(k^{2}-k^{\prime 2}\right) \tau_{5}\right]=\)
\(=2(P \cdot K)^{2} T_{2}+2 k^{z} k^{\prime 2} T_{n}-P \cdot K\left(k^{a}+k^{\prime t}\right) T_{2}-P \cdot K\left(k^{2}-k^{\prime 2}\right) T_{10}\),
\(\tau_{59}=\frac{1}{4 k \cdot k^{\prime}}\left[\left(k^{2}-k^{\prime 2}\right) \tau_{10}-2\left(k^{2}+k^{\prime 2}\right) \tau_{14}+4 P \cdot K \tau_{15}\right]=\)
\(=-2\left(k^{2}-k^{\prime 2}\right) T_{s}-2 P \cdot K T_{10}+M\left(k^{2}-k^{\prime 2}\right) T_{21}+M\left(k^{2}+k^{\prime 2}\right) T_{22}-\) \(-2 M P \cdot K T_{84}+\frac{k^{2}+k^{\prime 2}}{2} T_{25}-P \cdot K T_{29}-\)
\[
-P \cdot K \frac{k^{2}-k^{\prime 2}}{2} T_{23}+M \frac{k^{2}-k^{\prime 2}}{4} T_{54},
\]
\(\tau_{21}=\frac{1}{4 k \cdot k^{\prime}}\left[\left(k^{2}+k^{\prime 2}\right) \tau_{\mathrm{n}}-2\left(k^{2}-k^{\prime 2}\right) \tau_{14}+4 P \cdot K \tau_{16}\right]=\)
\(=-2\left(k^{2}+k^{\prime 2}\right) T_{4}+2 P \cdot K T_{v}+M\left(k^{2}+k^{\prime 2}\right) T_{21}+M\left(k^{2}-k^{\prime 2}\right) T_{28}-\) \(-2 M P \cdot K T_{22}+\frac{k^{2}-k^{\prime 2}}{2} T_{22}-P \cdot K T_{30}-\)
\[
-P \cdot K \frac{k^{2}+k^{\prime 2}}{2} T_{33}+M \frac{k^{2}+k^{\prime z}}{4} T_{34}
\]

\section*{Transverse tensor basis for \(\Gamma^{\mu \nu}\left(p, Q, Q^{\prime}\right)\)}
- Generalize transverse projectors: \(t_{a b}^{\mu \nu}:=a \cdot b \delta^{\mu \nu}-b^{\mu} a^{\nu}\)
\(a, b \in\left\{p, Q, Q^{\prime}\right\}\)
\(\varepsilon_{a b}^{\mu \nu}:=\gamma_{5} \varepsilon^{\mu \nu \alpha \beta} a^{\alpha} b^{\beta}\)
(exhausts all possibilities)
- Apply Bose-(anti-)symmetric combinations
\[
\begin{array}{llll}
\text { pply Bose-(anti-)symmetric combinations } & & p^{\alpha} \gamma^{\beta}+\gamma^{\alpha} p^{\beta} \\
\mathrm{E}_{ \pm}^{\mu \alpha, \beta \nu}(a, b):=\frac{1}{2}\left(\varepsilon_{Q^{\prime} a^{\prime}}^{\mu \alpha} \varepsilon_{b Q}^{\beta \nu} \pm \varepsilon_{Q^{\prime} b^{\prime}}^{\mu \alpha} \varepsilon_{a Q}^{\beta \nu}\right) & \text { to structures } & \delta^{\alpha \beta} & p^{\alpha \beta} \gamma^{\beta}-\gamma^{\alpha} p^{\beta} \\
\mathrm{F}_{ \pm}^{\mu \alpha, \beta \nu}(a, b):=\frac{1}{2}\left(t_{Q^{\prime} a^{\prime}}^{\mu \alpha} t_{b Q}^{\beta \nu} \pm t_{Q^{\prime} b^{\prime}}^{\mu \alpha} t_{a Q}^{\beta \nu}\right) & \text { independent } & {\left[p^{\alpha} \gamma^{\beta}+\gamma^{\alpha} p^{\beta}, p\right]} \\
\mathrm{G}_{ \pm}^{\mu \alpha, \beta \nu}(a, b):=\frac{1}{2}\left(\varepsilon_{Q^{\prime} a^{\prime}}^{\mu \alpha} t_{b Q}^{\beta \nu} \pm t_{Q^{\prime} b^{\prime}}^{\mu \alpha} \varepsilon_{a Q}^{\beta \nu}\right) & \text { of } Q, Q^{\prime}: & {\left[\gamma^{\beta}\right]} & {\left[p^{\alpha} \gamma^{\beta}-\gamma^{\alpha} p^{\beta}, p p\right]} \\
& & {\left[\gamma^{\alpha}, \gamma^{\beta}, p\right]} & p^{\alpha} p^{\beta}
\end{array}
\]
- obtain 16 quadratic, 40 cubic 16 quartic terms \(\Rightarrow 72\) in total \(\sqrt{ }\)
- no kinematic singularities \(\sqrt{ }\)
- Transverse onshell basis: GE,Fischer, PRD 87 (2013) \& PoS Conf.X (2012)
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{E}_{+}(P, P)(++)\) & \(\widetilde{E}_{+}(P, P) \quad(-+)\) & \(\mathrm{F}_{+}(P, Q) \quad(-+)\) & \(\widetilde{F}_{+}(P, Q)(++)\) \\
\hline \(\mathrm{F}_{+}(P, P)(++)\) & \(\widetilde{\mathrm{F}}_{+}(P, P) \quad(-+)\) & \(\mathrm{G}_{+}(P, Q) \quad(-+)\) & \(\widetilde{\mathrm{G}}_{+}(P, Q) \quad(+-)\) \\
\hline \(\mathrm{G}_{+}(P, P)(++)\) & \(\widetilde{\mathrm{G}}_{+}(P, P) \quad(--)\) & \(\mathrm{F}_{-}(P, Q) \quad(+-)\) & \(\widetilde{F}_{-}(P, Q)(--)\) \\
\hline \(\mathrm{G}_{-}(P, P)(--)\) & \(\widetilde{\mathrm{G}}_{-}(P, P) \quad(++)\) & \(\mathrm{G}_{-}(P, Q) \quad(+-)\) & \(\widetilde{\mathrm{G}}_{-}(P, Q)(-+)\) \\
\hline & & \(\mathrm{F}_{+}(Q, Q)(++)\) & \(\tilde{F}_{+}(Q, Q) \quad(-+)\) \\
\hline VVCS & Scalar vertex & & \\
\hline
\end{tabular}
- Simple
- analytic in all limits
- manifest crossing and charge-conjugation symmetry
- scalar \& pion pole only in a few Compton form factors
- Tarrach's basis can be cast in a similar form

\section*{Compton amplitude at quark level}

Baryon's Compton scattering amplitude, consistent with Faddeev equation:
GE, Fischer, PRD 85 (2012)
\[
\langle H| J^{\mu} J^{\nu}|H\rangle=\bar{\chi}\left(G^{-1^{\mu}} G G^{-1^{\nu}}+G^{-1^{\nu}} G G^{-1^{\mu}}-\left(G^{-1}\right)^{\mu \nu}\right) \chi
\]

In rainbow-ladder (+ crossing \& permutation):

\(\checkmark\) crossing symmetry
\(\checkmark\) em. gauge invariance
\(\sqrt{ }\) perturbative processes included
\(\checkmark\) s, t, u channel poles generated in QCD

cat's ears diagrams
- Born (handbag) diagrams: \(\mathrm{G}=1+\mathrm{T}\)
- all s- and u-channel nucleon resonances:


\section*{Compton amplitude at quark level}

Collect all (nonperturbative!) 'handbag' diagrams, where photon couples to same quark: no nucleon resonances, no cat's ears

- not electromagnetically gauge invariant, but comparable to 1 PI ,structure part \({ }^{\text {at }}\) nucleon level?
- reduces to perturbative handbag at large photon momenta
- but also all t-channel poles included!

Represented by full quark Compton vertex, including Born terms.
Satisfies inhomogeneous BSE:

\(=\)

\(+\)



Solved in rainbow-ladder: 128 tensor structures (72 transverse).
Simplifies dramatically by choice of convenient basis!

\section*{Compton amplitude at quark level}

Quark Compton vertex: recovers t-channel poles, e. g. scalar and pion \(\sqrt{ }\)


GE \& Fischer, PRD 87 (2013)

Quark Compton vertex and nucleon Compton amplitude: residues at pion pole recover \(\pi \gamma \gamma\) transition form factor \(\sqrt{ }\)


Rainbow-ladder result:
Maris \& Tandy, PRC 65 (2002)

(extracted from quark Compton vertex)

(extracted from nucleon Compton amplitude)

\section*{Fermion Compton vertex}

2-photon WTI \(\Rightarrow\) general offshell fermion Compton vertex can be written as
```

$\Gamma^{\mu \nu}=\Gamma_{\mathrm{B}}^{\mu \nu}+\Gamma_{\mathrm{BC}}^{\mu \nu}+\Gamma_{\mathrm{T}}^{\mu \nu}$
Born WTI WTI-T

- 2-photon equivalent of
Ball-Chiu vertex, fixed
by quark propagator \&
quark-photon vertex
 - no kinematic singularities

```
```

- not constrained by WTI,
calculated from BSE
Transverse
 - contains t-channel poles
 - no kinematic singularities
 - 72 elements offshell
(18 elements onshell)

```

General structure of fermion two-photon vertex (both offshell and onshell) determined.
- Onshell amplitude: gauge-invariant separation!
- Quark Compton vertex: all these will contribute to Compton form factors ( \(\Rightarrow\) polarizabilities, structure functions, GPDs, etc.). Dominant contributions?
\(\Rightarrow\) Born (handbag)?
\(\Rightarrow\) WTI, WTI-T (em. gauge invariance) ?
\(\Rightarrow\) Fully transverse part (t-channel poles) ?

\section*{Summary}

\section*{So far:}
- Structure analysis of nucleon Compton amplitude \& quark Compton vertex
- Nonperturbative calculation of handbag part (quark Compton vertex \(=\) Born +t -channel), \(t\)-channel pole behavior reproduced.

\section*{Next:}
- Extract polarizabilities (subtraction needed to restore gauge invariance)
- Two-photon exchange contribution to form factors
- GPDs \& nucleon PDFs
- Study offshell effects at nucleon level

\section*{Long term:}
- Improve truncations (pion cloud, decay channels, quark six-point function)
- Access larger phase space (e.g. timelike region in \(p \bar{p} \rightarrow \gamma \gamma\) )

\section*{Thanks for your attention.}

\section*{Cheers to my collaborators:}
R. Alkofer, M. Blank, C. S. Fischer, W. Heupel, A. Krassnigg, V. Mader, D. Nicmorus, H. Sanchis-Alepuz, S. Villalba-Chávez, R. Williams

Supported by FWF (Austrian Science Fund) projects J3039-N16 \& P25121-N27```

